

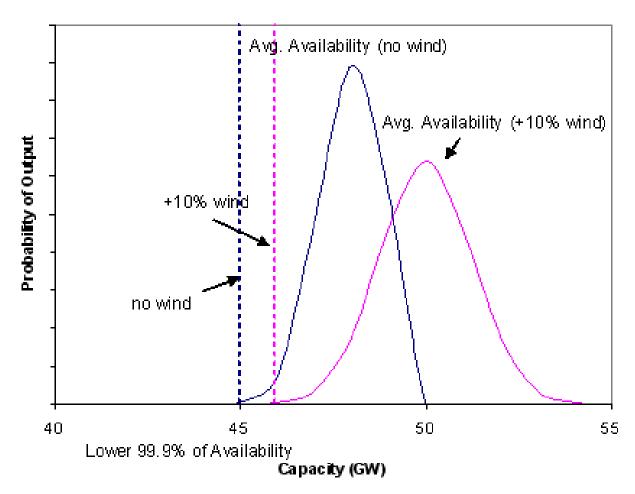
Updates to Wind Intermittency Algorithms for AEO2004

Chris Namovicz
Renewable Energy Modeler's Summit
April 20, 2004

Overview

- Background
- Capacity Credits
- Surplus Curtailment
- Other updates

Background


- Capacity credit algorithm updated for AEO2003
 - Was fixed credit with low penetration limit
 - AEO2003 had declining credit with higher limit
- AEO2003 decline function was exogenously estimated
- AEO2003 limit was based on potential cost of surplus curtailments

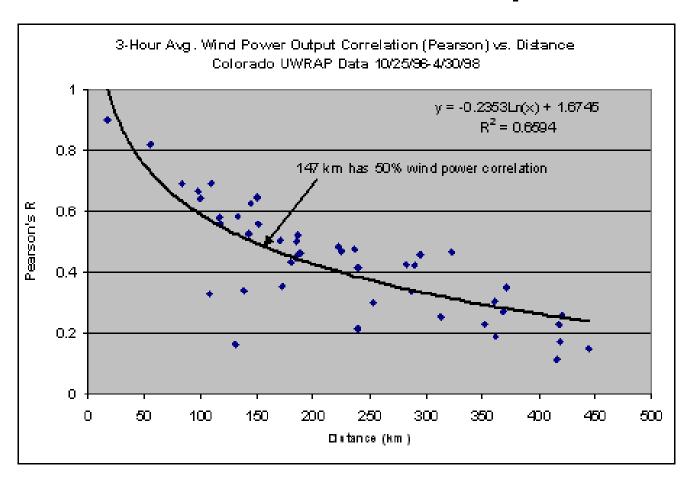
Capacity Credit Algorithm

- AEO2004 has improved function for estimating capacity credit decline
 - Endogenously determined
 - Based on reliability characteristics of installed capacity and assumed regional wind variation
- Statistical/Probabilistic approach used
 - Estimate standard deviation of conventional plant availability and wind plant availability

Capacity Credit for Wind

Fundamental Calculation:

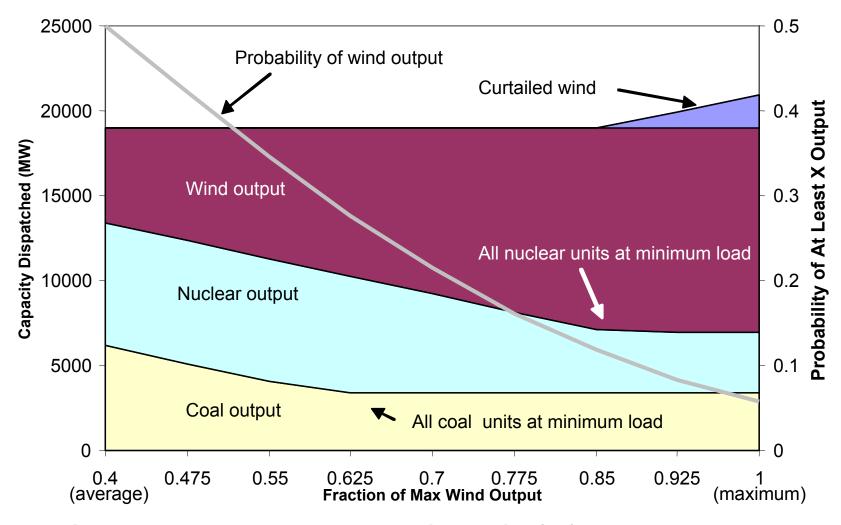
- Determine of "5-nines" load carrying capacity with and without wind
- Capacity credit is difference between LCC over total wind capacity



Accounting for Reliability

- Conventional plant outages are assumed to be uncorrelated with each other
- Wind output variance modeled on "typical" turbine in an average, Class 6 wind regime
 - Output statistics scaled to 50 MW plant size
- Wind availability is correlated as a function of distance between wind plants
 - Neighboring plants would see same resource at same time
 - Distant plants would be less correlated
 - Time frame of interest is hourly/daily

Data on Wind Dispersion


- Uses hourly wind data collected for resource assessment
- Final correlation factor based on regional size

Surplus Wind Curtailment

- Accounts for system balancing during low-load periods with high wind penetration
 - Occasional high-wind conditions may cause excess generation on system, backing-off "baseload" units
- Long restart-time units (primarily coal and nuclear) will likely not be allowed to run below minimum operating levels
 - Wind has minimal operating cost to curtail
 - Cost of wind curtailment will be reduced utilization of high-cost capital

How Curtailment Works in NEMS

 Assumes max. coal turn-down is 3:1, max. nuclear turn-down is 2:1, all other units may be shut-down

©Curtailment Implementation

- Surplus wind energy in each load period is subtracted from period total and capacity factor is recalculated for load period
 - New annual average capacity factor is recalculated as weighted average of all load periods
- Wind variability and dispersion statistics are same as used in capacity credit calculations

Intermittency Summary

- Direct accounting for reliability and curtailment raises confidence that key intermittency costs are accounted for up to 40% wind penetration
- Algorithms estimate current system state
 - Large capacity increments will diverge significantly from model parameters
 - System assumed to need time to adjust to new operating regime with high penetration
 - Intermittent penetration limit increases by 5 percentage points per year from 20% to 40%

Current Projects

- Long-term cost adjustment factors
 - Frances will discuss improvements to algorithm
 - Jim will discuss study to re-evaluate data

Costs

- Currently reviewing Form 412 data
- Potentially a good source of real-world project cost data
- Response rate was poor among wind industry
- Form was designed for conventional plants
- Working with CNEAF to improve data quality before data can be reliably analyzed

Resource Characteristics

- Get better data on regional wind dispersion
- Re-evaluate data on load-period output of wind
 - Get better match to refined capacity credit calculation
 - Account for change in NERC regional boundaries